Design of basic microprocessor
architectural Concepts

Design of basic microprocessor
architectural Concepts

 Microprocessor architecture, word Lengths,
addressable memory

 Microprocessor’s speed architectural
characteristics

e Registers, instruction, memory addressing
architecture, ALU,GPR’s Control logic &
internal data bus.

Is a programmable integrated device that has
computing and decision- making capability similar
to that of central processing unit of a computer.

It is a multipurpose, programmable, clock driven,
register based electronic device that reads binary
information from a storage device called memory,
accepts binary data as input and processes data
according to those instructions and provides
results as output.

A Programmable machine

Micro-

o roessor L[oupu]
l.,;

CPU

Memory

e 8085 was a newer version of 8080, again introduced
by Intel in 1977.

® The 8085 addresses the same amount of memory,
executed about the same number of instructions.

® However it was a little faster than the 8080 in that
sense that an addition instruction which took about
2 us on an 8080 took only 1.3 us on an 8085.

® The main advantage of an 8085 is its built-in clock
and system controller which was external
components on an 8080 based system.

The functions of various components:

— The microprocessor
® reads instructions from memory.
® communicates with all peripherals (memory and 1/0s) using the system bus.
® controls the timing of information flow.
® performs the computing tasks specified in a program.
— The memory
® stores binary information, called instructions and data.
® provides the instructions and data to the microprocessor on request.
® stores results and data for the microprocessor.
— The input device
® enters data and instructions under the control of a program such as program.
— The output device
® accepts data from the microprocessor as specified in a program.
— The bus
® carries bits between the microprocessor and memory and I/Os.

Introduction to Microprocessor

The microprocessor communicates and operates in the binary
numbers 0 and 1, called bits.

Each microprocessor has a fixed set of instructions in the form
of binary patterns called a machine language.

It is difficult for humans to communicate in the language of Os
and 1s.

Therefore, the binary instructions are given abbreviated
names, called mnenomics, which form the assembly language
for a given microprocessor.

Applications

® |n reprogrammable systems, such as
microcomputers, the microprocessor is used for
computing and data processing. These systems
include:

— general-purpose microprocessors capable of
handling large data, mass storage devices (such as
disks and CD-ROMs), and peripherals such as
printers

— a personal computer (PC) is a typical illustration.

Applications

* |In embedded systems, the microprocessor Is a
part of a final product and is not available for
reprogramming to the end user. Example:

— copying machine
— washing machine.
— Alr-conditioner etc.

Microprocessor

ALU Register

/o

Input / Output

Array

B

< Sysiﬂm Bus

S e

4t

Control

Memory

ROM

R/'WM

FIGURE 1.3

Microprocessor-Based System with Bus Architecture

Speed ARCHITECTURAL characteristics

AST 7.6

TRAP

RSTE:&
AST 6.5

EEEE %
i Ferrupt controd E Sedal 1#0 corvirod

! ! i ! i

Accumulator] [Temp reg |Fmﬂ|p-ﬁa£| Instruction | |Breg (M) |Creg (B}

—= 5|0

(Arag] (B) register (8} | IDreg @) |Ereg (B)
‘[’[1 !l Hreg @) |Lreg (8)

r——Tp— Stack pointer {18}

e ||| 2, | e
(ALYy qgf (machine cyclel le ementeridecrementar
address laxch {18)

Regiater armay

ul
TiEning and control [L
e K Eddress
—={GEN Cantret Status DMA Haeset| | 00er 3
EEREERRIB AR N i
§§§§‘5£ﬂ§ﬂ§§§ A= Ay AD, = A,
é& = = § ‘f%g address bus addressidata bus
iﬁﬁl

Register Group

Temporary registers (W,Z):These are not available for user.
These are loaded only when there is an operation being
performed.

General purpose:There are six general purpose registers in
8085 namely B,C,D,E,H,L.These are used for various data
manipulations.

Special purpose :There are two special purpose registers in
8085:

SP :Stack Pointer.
PC:Program Counter.

Registers and GPR’s controlregiser

Stack Pointer: This is a temporary storage memory 16 bit register.

Since there are only 6 general purpose registers, there is a need
to reuse them .

e Whenever stack is to be used previous values are PUSHED on

stack and then after the program is over these values are
POPED back.

Program Counter: It is 16 bit register used to point the location
from which the next instruction is to be fetched.

* When a single byte instruction is executed PC is automatically
incremented by 1.

e Upon reset PC contents are set to O000H and next instruction is
fetched onwards.

INSTRUCTION REGISTER,DECODER &
CONTROL

e |nstruction register:When an instruction is fetched, it is
executed in instruction register.This register takes the
Opcode value only.

* |nstruction decoder: It decodes the instruction from
instruction register and then to control block.

e Timing and control:This is the control section of UP.It
accepts clock input .

Internal data Bus

The 8085 is an 8-bit general purpose microprocessor that can address 64K
Byte of memory.

It has 40 pins and uses +5V for power. It can run at a maximum frequency
of 3 MHz.

— The pins on the chip can be grouped into 6 groups:
e Address Bus.
e Data Bus.
e Control and Status Signals.
e Power supply and frequency.
e Externally Initiated Signals.
e Serial I/O ports.

The Address and Data Busses

e The address bus has 8 signal lines A8 — A15 which are unidirectional.

e The other 8 address bits are multiplexed (time shared) with the 8 data
bits.

— So, the bits ADO — AD7 are bi-directional and serve as AO — A7 and DO —
D7 at the same time.

e During the execution of the instruction, these lines carry the
address bits during the early part, then during the late parts of the
execution, they carry the 8 data bits.

— In order to separate the address from the data, we can use a latch to
save the value before the function of the bits changes.

The Control and Status Signals

 There are 4 main control and status signals. These are:

ALE: Address Latch Enable. This signal is a pulse that become 1
when the ADO — AD7 lines have an address on them. It becomes 0
after that. This signal can be used to enable a latch to save the
address bits from the AD lines.

RD: Read. Active low.
WR: Write. Active low.

|0/M: This signal specifies whether the operation is a memory
operation (I0/M=0) or an /O operation (I0/M=1).

S1 and SO : Status signals to specify the kind of operation being
performed .Usually un-used in small systems.

Frequency Control Signals

e There are 3 important pins in the frequency control group.
— X0 and X1 are the inputs from the crystal or clock generating circuit.
e The frequency is internally divided by 2.

— So, to run the microprocessor at 3 MHz, a clock running at 6
MHz should be connected to the X0 and X1 pins.

— CLK (OUT): An output clock pin to drive the clock of the rest of the
system.

 We will discuss the rest of the control signals as we get to them.

Microprocessor Communication and Bus Timing

To understand how the microprocessor operates and uses these different
signals, we should study the process of communication between the
microprocessor and memory during a memory read or write operation.

Lets look at timing and the data flow of an instruction fetch operation.
(Example 3.1)

Steps For Fetching an Instruction

e Lets assume that we are trying to fetch the instruction at memory location
2005. That means that the program counter is now set to that value.

— The following is the sequence of operations:

The program counter places the address value on the address bus
and the controller issues a RD signal.

The memory’s address decoder gets the value and determines
which memory location is being accessed.

The value in the memory location is placed on the data bus.

The value on the data bus is read into the instruction decoder
inside the microprocessor.

After decoding the instruction, the control unit issues the proper
control signals to perform the operation.

Timing Signals For Fetching an Instruction

* Now, lets look at the exact timing of this sequence of events as that is
extremely important. (figure 3.3)

— At T1, the high order 8 address bits (20H) are placed on the address
lines A8 — A15 and the low order bits are placed on AD7—-ADO. The
ALE signal goes high to indicate that ADO — AD8 are carrying an
address. At exactly the same time, the 10/M signal goes low to
indicate a memory operation.

— At the beginning of the T2 cycle, the low order 8 address bits are
removed from AD7— ADO and the controller sends the Read (RD)
signal to the memory. The signal remains low (active) for two clock
periods to allow for slow devices. During T2 , memory places the
data from the memory location on the lines AD7— ADO .

— During T3 the RD signal is Disabled (goes high). This turns off the
output Tri-state buffers in the memory. That makes the AD7— ADO
lines go to high impedence mode.

Demultiplexing AD7-ADO

— From the above description, it becomes obvious that the
AD7- ADO lines are serving a dual purpose and that they need
to be demultiplexed to get all the information.

— The high order bits of the address remain on the bus for three
clock periods. However, the low order bits remain for only
one clock period and they would be lost if they are not saved
externally. Also, notice that the low order bits of the address
disappear when they are needed most.

— To make sure we have the entire address for the full three
clock cycles, we will use an external latch to save the value of
AD7- ADO when it is carrying the address bits. We use the
ALE signal to enable this latch.

Demultiplexing AD7-ADO

8085
A15-A8 >

ALE |

AD7-ADO)y Lateh A A

— Given that ALE operates as a pulse during T1,
we will be able to latch the address. Then
when ALE goes low, the address is saved and
the AD7— ADO lines can be used for their
purpose as the bi-directional data lines.

Cycles and States

* From the above discussion, we can define terms that will become
handy later on:
— T- State: One subdivision of an operation. A T-state lasts for one
clock period.
e An instruction’s execution length is usually measured in a
number of T-states. (clock cycles).
— Machine Cycle: The time required to complete one operation of
accessing memory, I/0, or acknowledging an external request.
* This cycle may consist of 3 to 6 T-states.
— Instruction Cycle: The time required to complete the execution
of an instruction.

e Inthe 8085, an instruction cycle may consist of 1 to 6
machine cycles.

Generating Control Signals

 The 8085 generates a single RD signal. However, the signal needs to be
used with both memory and I/0. So, it must be combined with the |IO0/M
signal to generate different control signals for the memory and 1/0.

— Keeping in mind the operation of the I0/M signal we can use the
following circuitry to generate the right set of signals:

L L— MEMR

RD"

iR [——— MEMI
> [—1I0R
Pt 1w

The ALU

In addition to the arithmetic & logic circuits, the ALU includes
the accumulator, which is part of every arithmetic & logic
operation.

Also, the ALU includes a temporary register used for holding
data temporarily during the execution of the operation. This
temporary register is not accessible by the programmer.

The Flags register

— There is also the flags register whose bits are affected by the arithmetic & logic
operations.

e S-sign flag
— The sign flag is set if bit D7 of the accumulator is set after an arithmetic
or logic operation.
e Z-zeroflag

— Set if the result of the ALU operation is 0. Otherwise is reset. This flag is
affected by operations on the accumulator as well as other registers.
(DCR B).

e AC-Auxiliary Carry

— This flag is set when a carry is generated from bit D3 and passed to D4 .
This flag is used only internally for BCD operations. (Section 10.5
describes BCD addition including the DAA instruction).

e P-Parity flag
— After an ALU operation if the result has an even # of 1’s the p-flag is set.
Otherwise it is cleared. So, the flag can be used to indicate even parity.
e CY-carry flag
— Discussed earlier

Machine cycles

e The 8085 executes several types of instructions with each
requiring a different number of operations of different
types. However, the operations can be grouped into a small
set.

e The three main types are:
e Memory Read and Write.
e |/O Read and Write.
e Request Acknowledge.

e These can be further divided into various operations
(machine cycles).

Opcode Fetch Machine Cycle

e The first step of executing any instruction is the Opcode fetch cycle.

— In this cycle, the microprocessor brings in the instruction’s Opcode
from memory.

e To differentiate this machine cycle from the very similar “memory
read” cycle, the control & status signals are set as follows:

— |0/M=0, sO and s1 are both 1.
— This machine cycle has four T-states.
 The 8085 uses the first 3 T-states to fetch the opcode.
e T4 is used to decode and execute it.

— ltis also possible for an instruction to have 6 T-states in an opcode
fetch machine cycle.

Memory Read Machine Cycle

e The memory read machine cycle is exactly the
same as the opcode fetch except:

— It only has 3 T-states
— The sO signal is set to 0 instead.

The Memory Read Machine Cycle

— To understand the memory read machine cycle, let’s study the

execution of the following instruction:
e MVIA 32 2000H 3E
— In memory, this instruction looks like: 200tH | 32

e The first byte 3EH represents the opcode for loading aoyte
into the accumulator (MVI A), the second byte is the data to
be loaded.

— The 8085 needs to read these two bytes from memory before it
can execute the instruction. Therefore, it will need at least two
machine cycles.

— The first machine cycle is the opcode fetch discussed
earlier.

— The second machine cycle is the Memory Read Cycle.
— Figure 3.10 page 83.

Machine Cycles vs. Number of bytes in the instruction

 Machine cycles and instruction length, do not
have a direct relationship.

— To illustrate lets look at the machine cycles
needed to execute the following instruction.

* STA 2065H

* This is a 3-byte instruction requiring 4 machine cycles and 13 T-
states.

e The machine code will be stored
in memory as shown to the right

e This instruction requires the following 4 machine cycles| 32H | 2010+

— Opcode fetch to fetch the opcode (32H) from location 2010H, deco 65H
determine that 2 more bytes are needed (4 T-states).

— Memory read to read the low order byte of the address (65H) (3 T-9 20H | 2012H
— Memory read to read the high order byte of the address (20H) (3 T-states).
— A memory write to write the contents of the accumulator into the memory location.

2011H

The Memory Write Operation

 |n a memory write operation:

— The 8085 places the address (2065H) on the
address bus

— |dentifies the operation as a memory write
(10/M=0, s1=0, s0=1).

— Places the contents of the accumulator on the
data bus and asserts the signal WR.

— During the last T-state, the contents of the data
bus are saved into the memory location.

Memory interfacing

 There needs to be a lot of interaction between the
microprocessor and the memory for the exchange of
information during program execution.

— Memory has its requirements on control signals and their
timing.

— The microprocessor has its requirements as well.

 The interfacing operation is simply the matching of these

requirements.

Memory structure & its requirements

Data Lines ROM
Input Buffer [©O— WR
Address 5 Cs Address O— cs
Lines Lines
Output Buffer O0—— RD Output Buffer O0—— RD
Data Lines

Date
Lines

The process of interfacing the above two chips is the
same.

— However, the ROM does not have a WR signal.

Interfacing Memory

— Accessing memory can be summarized into the following three
steps:

— Select the chip.
— ldentify the memory register.
— Enable the appropriate buffer.

— Translating this to microprocessor domain:

— The microprocessor places a 16-bit address on the
address bus.

— Part of the address bus will select the chip and the other

part will go through the address decoder to select the
register.

— The signals I0/M and RD combined indicate that a
memory read operation is in progress. The MEMR signal
can be used to enable the RD line on the memory chip.

Address decoding

 The result of address decoding is the identification of a
register for a given address.

— A large part of the address bus is usually connected
directly to the address inputs of the memory chip.

— This portion is decoded internally within the chip.

— What concerns us is the other part that must be
decoded externally to select the chip.

— This can be done either using logic gates or a
decoder.

get:

The Overall Picture
e Putting all of the concepts together, we

8085

WR RD IOM

A15-A8

ALE

/

A15_ AlO /

Ag- Ay % 1K Byte
Latch —
AD7-ADO R Mgrgligry
D7_ DO l\
N
MEMR 0
> ——
MEMW
——) !

® Can be classified into the following five
functional categories:
— data transfer (copy) operations,
— arithmetic operations,
— logical operations,
— branching operations, and
— machine-control operations.

Data Transfer (copy) Instructions

Types Examples

[Between registers Copy the contents of register B into register D,

B Speciﬁc data byte to a eg: Load register B with the data byte 321,
ISr or & memory location

. Between 4 memory location From the memory location 2000H o register B.
and a register

U Between an 0 device and From an input keyboard to the accumulator
e accumulator

Data Transfer (Copy) Instructions

® These instruction perform the following 6
operations:
— Load an 8-bit register
— Copy from register to register
— Copy between I/O and accumulator
— Load 16-bit number in a register pair
— Copy between register and memory
— Copy between registers and stack memory

e Add

® Subtract

® Increment (Add 1)

® Decrement (Subtract 1)

ARITHMETIC GROUP

ADD R (ADD register content with Acc and result in A).
Example:

ADD C. (ADD the content of C with A).
Suppose the Data at C register is 10H.
Initially After execution

. C=10H ,A=10H A=20H,C=10H.
Flags Affected :All flags are modified.
Addressing mode: Register

Example

Instruction: ADD B

Register contents before Register contents after
Instruction Instruction:
Al 9A, Al 23,
B | 89, HH > B | 89,
Flag 80 |, Flag 10

1001 1010
1000 1001 Note: All flags are

modified to reflect the
result of the adadition.

0010 0011

Flag: S=0, Z=0, AC=1 , P=0 and C=1

* AND

®* OR

® X-OR (Exclusive OR)
® Compare

® Rotate Bits

LOGICAL GROUP

Write a program to reset last 4 bits of the number 32H
Store result at C200H.

MVI A, 32H A=32H

ANI FOH 00110010 AND 1111000
=00110000=30H

STA C200H. C200=30H

RST1 Stop

BRANCH GROUP

* JUMP
* CALL

e (conditional and unconditional)

BRANCH GROUP

JMP address(Unconditional jump to address)
Example:
JMP C200H.

e After this instruction the Program Counter is loaded with this
location and starts executing and the contents of PC are
loaded on Stack.

Flags Affected :No Flags are affected.
Addressing mode:Immediate.

CALL address(Unconditional CALL from
address)

Example:
CALL C200H.

e After this instruction the Program Counter is loaded with this
location and starts executing and the contents of PC are
loaded on Stack.

Flags Affected :No Flags are affected.
Addressing mode:Immediate

BRANCH GROUP

Conditional Jump Instructions.

JC (Jump if Carry flag is set)

JNC (Jump if Carry flag is reset)

JZ (Jump if zero flag set)

JNZ (Jump if zero flag is reset)

JPE (Jump if parity flag is set)

JPO (Jump if parity odd or P flag is reset)
JP (Jump if sign flag reset)

JM (Jump if sign flag is set or minus)

BRANCH GROUP

Conditional Call Instructions.

CC (Call if Carry flag is set)

CNC (Call if Carry flag is reset)

CZ (Call if zero flag set)

CNZ (Call if zero flag is reset)

CPE (Call if parity flag is set)

CPO (Call if parity odd or P flag is reset)
CP (Call if sign flag reset)

CM (Call if sign flag is set or minus)

BRANCH GROUP

RET (Return from subroutine)
Example:
MOV A,C

RET

e After this instruction the Program Counter POPS PUSHED
contents from stack and starts executing from that address .

Flags Affected :No Flags are affected.
Addressing mode:Register indirect .

BRANCH GROUP

RST (Restart instruction)
Example:
MOV A,C

RST 1.

e After this instruction the Program Counter goes to address
0008H and starts executing from that address .

Flags Affected :No Flags are affected.
Addressing mode:Register indirect.

BRANCH GROUP

The addresses of the respective RST commands are:

Instruction | Address
RSTO 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

STACK AND MACHINE CONTROL

PUSH Rp.(Push register pair contents on stack).
Example:LXI SP FFFFH.
PUSH H. (Move the content of HL pair on Stack).

e Suppose at HL pair the data is H=20H,L= 30H & SP is
initialized at FFFFH

Initially After execution
H=20H,L=30H H=20H,L=30H.
SP=FFFF H FFFD=30H,FFFE=20H

Flags Affected :No flags affected.
Addressing mode: Register indirect.

STACK AND MACHINE CONTROL

POP Rp.(Pop register pair contents from stack).
Example:POP D(POP the content of DE pair from Stack).

e Suppose at DE pair the data is H= 20H,L= 30H SP was
initialized at FFFFH

Initially After execution
D=20H,E=30H D=10H,E=80H.
FFFD=80H,FFFE=10H

Flags Affected :No flags affected.

Addressing mode: Register indirect

STACK AND MACHINE CONTROL

XTHL (Exchange HL register pair contents with top of stack).
Example:XTHL(Exchange top with HL pair).

e Suppose at HL pair the data is H= 20H,L= 30H & SP =FFFFH
& at locations FFFF=10H and at FFFE= 80H.

Initially After execution
H=20H,L=30H H=10H,L=80H.
SP=FFFF =10H,FFFE=80H FFFD=20H,FFFE=30H

Flags Affected :No flags affected.
Addressing mode: Register indirect.

Common Errors

LDA 205IH: Not entering the code of the 16-bit
address in reversed order.

Forgetting to enter the code for the operand, such as
205IH.

MOV B, A: Assuming that this copies from B to A.

Incrementing the address in decimal, from 2039H to
2040H.

HLT: Not terminating a program.

Confusing the entering of Hex code in memory as
executing a program.

® |[n the 8085, “byte” and “word” are
synonymous because it is an 8-bit
microprocessor.

® However, instructions are commonly referred
to in terms of bytes rather than words.

— 1-byte instructions
— 2-byte instructions

— 3-byte instructions

1-byte instructions

® |t includes the opcode and the operand in the
same byte. For example:

Task Opeode Operand® Binary Code Hex Code
Copy the contents of MOV C.A Ok ELT 4FH
the accumulator in
register C,
Add the contents of ADD H LECIRLE LY ROH

register B 1o the
contents of the ac-

cimulator, N
Invert complement) CMA IR RRY 2FH

each bat 1n the -
cumiilstorn.

2-byte instructions

® The first byte specifies the operation code and the
second byte is the data

® For example:
MVI A,20H. Transfer immediate data 20H to accumulator.
Number of bytes: 2

3E,06H

15t byte is opcode.
2"d pyte 8 bit data .

3-byte instructions

The first byte specifies the operation code and the following two bytes

specify the 16-bit address.

The second byte is the low-order address and the third byte is the high-

order address.

For example:
Binary Hes
Task Opeode Operand Lode Cole®
Load contents LDA YA (M1 | |n|[| 1A
of memon I”|I]I “H:IH' ()
TOSTH e A unuumu L
Transfer the IMp TR RCTEUTT RN
(ORI HHH" 1] Hi'| K3
SEqUENEE 10 IJ-I:IHI “IJ'IHI | 20

ey location
MIR5H.

First Byig
Second Byt
Thied Byte

First Byle
Second By
Thasd Byre

